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Abstract: Quantum secret sharing is an important technique in the field of quantum cryptography. 
However, the existence of imperfect detector is a serious threat in practical. Here we propose a 
continuous-variable measurement-device-independent quantum secret sharing protocol to remove 
the attacks carried out on imperfect detectors. We analyze the performance of the proposed protocol 
under different conditions, and show that it can be extendable to a large number of participants, 
which is of great help to its practical implementation. 

1. Introduction 
Quantum secret sharing (QSS) is a protocol where a secret message is distributed and 

reconstructed with unconditional security. The first QSS protocol is proposed in 1999 [1], in which 
the dealer distributes a secret to the players by entangled states, and the players have to collaborate to 
reconstruct the secret. After that, several QSS protocols based on entanglement have been proposed 
[2,3]. More recently, in order to ease the implementation difficulties and improve the performance, 
sequential QSS protocols that requires no entanglement have been proposed both in discrete-variable 
(DV) [4] and continuous-variable (CV) [5]. The latter has the advantage of being compatible with 
standard telecommunication technology as well as resilient to Trojan horse attacks. 

In the above CV-QSS protocol, it is implicitly assumed that the detector of the dealer is trusted. 
However, this assumption seems unjustified and over-optimistic in the practical system, which 
seriously threats the security of practical CV-QSS system. In the field of quantum key distribution 
(QKD), a similar problem has been solved with the proposal of continuous-variable 
measurement-device-independent (CV-MDI) QKD [6,7], and then the MDI method has also been 
applied to CV-QSS [8-10]. It is remarkable that the existing CV-MDI QSS protocols are basically 
based on entanglement, so the complexity of system implementation increases with a larger number 
of participants. Therefore, a CV-MDI QSS protocol without entanglement is needed, which is 
extendable to a large number of participants. 

In this paper, we propose a CV-MDI QSS protocol that is secure in the presence of imperfect 
detectors. In our protocol, Gaussian modulated coherent states are prepared locally by each player in 
the secure station and injected into a circulating optical mode with the help of highly asymmetric 
beam splitters (HABSs), which helps the protocol extendable to a large number of players with a 
reasonable performance. Then the dealer also prepares a coherent state, and the quantum states from 
the players and the dealer are finally measured by an untrusted third party through two homodyne 
detectors, making our protocol secure against all detector side attacks. 
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2. The Protocol 
As shown in Fig. 1, in our CV-MDI QSS scheme, n different players are connected by a single 

communication channel such as a telecom fiber. The quantum states from the players and the dealer 
interfere at a 50:50 BS at Charlie’s side, who is an untrusted third party. 

There are two stages in our CV-MDI QSS protocol: the quantum stage and the classical stage. All 
operations conducted by each participant in the two stages are carried out in his secure station, in 
which the quantum module (which contains the laser, modulators and other classical/quantum 
components) is used to generate Gaussian-modulated coherent state in the quantum stage and the 
classical unit is used to post-process the raw data and generate the secret key in the classical stage. 

2.1 Quantum Stage 
Step 1. Each player prepares a coherent state locally using the quantum module in his secure 

station. For the k-th (k=1, 2, …, n) player, his coherent state is denoted by |𝑥𝑥𝑘𝑘 + 𝑖𝑖𝑝𝑝𝑘𝑘⟩, where 𝑥𝑥𝑘𝑘 
and 𝑝𝑝𝑘𝑘 are independent Gaussian random numbers chosen by 𝑃𝑃𝑘𝑘. 

 
Fig 1. Schematic setup of the CV-MDI QSS protocol. QM: quantum module; CU: classical unit; 

HABS: highly asymmetric beam splitter; BS: 50:50 beam splitter; HD: homodyne detector. Quantum 
modules are used in each secure station to prepare Gaussian-modulated coherent states, then each 

player generates an independent secret key with the dealer using their classical units. 

Step 2. Each player other than 𝑃𝑃1 couples his quantum state into the same spatiotemporal mode 
as the state from 𝑃𝑃1 via the HABS located in his secure station. At the end, the states from the 
players’ side enter one input port of the 50:50 BS on Charlie’s side, which can be described by 

�∑ �𝑇𝑇𝑘𝑘𝑛𝑛
𝑘𝑘=1 𝑥𝑥𝑘𝑘 + 𝑖𝑖 ∑ �𝑇𝑇𝑘𝑘𝑛𝑛

𝑘𝑘=1 𝑝𝑝𝑘𝑘�                           (1) 

where 𝑇𝑇𝑘𝑘  is the total transmittance (including losses due to the channel and the HABSs) 
experienced by the state from 𝑃𝑃𝑘𝑘. 

Step 3. In the meantime, the dealer prepares his coherent state |𝑥𝑥𝐷𝐷 + 𝑖𝑖𝑝𝑝𝐷𝐷⟩ locally and sends it to 
another input port of Charlie’s BS through the quantum channel. 

Step 4. The untrusted third party Charlie makes a Bell measurement on the two output modes of 
the BS and broadcasts his measurement results, which can be described by 

                           (2) 

2.2 Classical Stage 
Step 1. The dealer randomly chooses a subset of the raw data, and all of the players as well as the 

dealer announce the corresponding Gaussian random numbers. Then the total transmittance of each 
player and the dealer can be calculated using the measurement results broadcast by Charlie.  

Step 2. The dealer assumes that 𝑃𝑃1 is an honest player and all the others dishonest. Then the 
dealer randomly chooses a subset of the remaining raw data, and requests all the other players to 
disclose their Gaussian random numbers. In the meantime, Charlie broadcasts the corresponding 
measurement results of the raw data. 

Step 3. The dealer displaces the measurement results broadcast by Charlie using 
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                         (3) 

After that, following the post-processing procedure of two-party CV-MDI QKD, the dealer and 
𝑃𝑃1 can derive a lower bound of the secret key rate 𝑅𝑅1 based on {𝑥𝑥𝑁𝑁 ,𝑝𝑝𝑁𝑁} and their own raw data. 
Then they generate a secret key 𝐾𝐾1 using the reverse reconciliation scheme. 

Step 4. Note that in the above steps 𝑃𝑃1 is taken as an example, so steps 2-3 need to be repeated n 
times and in each run a different player is chosen as the honest player. Finally, the dealer selects the 
minimum of n secret key rates as the final secure rate, that is, 𝑅𝑅 = min{𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑛𝑛}, and then 
obtains n independent keys {𝐾𝐾1,𝐾𝐾2, … ,𝐾𝐾𝑛𝑛} with the players.  

Finally, The dealer construct the final key K using 𝐾𝐾 = 𝐾𝐾1 ⊕ 𝐾𝐾1 ⊕⋯⊕𝐾𝐾𝑛𝑛 , where ⊕ 
represents modular 2 addition, and n players have to cooperate with each other to reconstruct it. 

3. Numerical simulation 
In order to calculate the secret key rate of CV-MDI QSS, we should first find the minimum of the 

n secret key rates. We assume that 𝑃𝑃1 is the farthest player from Charlie with the distance L. The 
other n - 1 players are distributed at equal intervals between 𝑃𝑃1 and Charlie. Therefore, the smallest 
secret key rate under normal operation will be the one between 𝑃𝑃1 and the dealer.  

For the quantum channels on the players’ side and the dealer’s side, both channel losses are α. 

Then the channel transmittance of 𝑃𝑃𝑘𝑘 can be expressed as 𝑇𝑇𝑘𝑘 = 10−
𝛼𝛼𝐿𝐿𝑘𝑘
10 , where 𝐿𝐿𝑘𝑘 is the distance 

between 𝑃𝑃𝑘𝑘 and Charlie. Similarly, the channel transmittance of the dealer can be calculated by  

𝑇𝑇𝐷𝐷 = 10−
𝛼𝛼𝐿𝐿𝐷𝐷
10 , where 𝐿𝐿𝐷𝐷 is the distance between the dealer and Charlie. Besides, we assume the 

modulation variances of each player and the dealer are the same, denoted by V, and the reconciliation 
efficiency is β. 

Here, we assume, without loss of generality, that the excess noise from each player as well as the 
dealer is 𝜀𝜀0. Since the secret key rate is usually calculated using noises referred to the channel input 
(at Alice), we can then calculate the excess noise introduced by 𝑃𝑃𝑘𝑘 using 

𝜀𝜀𝑘𝑘 = 𝑇𝑇𝑘𝑘
𝑇𝑇1
𝜀𝜀0                                   (4) 

Then we can apply the standard security proof method of CV-MDI QKD [6] to calculate the 
secret key rate of our protocol. Note that in practical implementation, the dealer should evaluate the 
secret key rate with each player by parameter estimation using the experimental data, and then 
determine the secret key rate of CV-MDI QSS. 

To begin with the simulation, the modulation variance V will undoubtedly affect the performance 
of the proposed protocol. For the sake of optimizing the performance of the protocol, we need to 
consider the optimal modulation variance of the protocol under different numbers of players and 
transmission distances given the distance between Charlie and the dealer 𝐿𝐿𝐷𝐷 = 0 km, which is 
shown in Fig. 2. In the following discussion, for simplicity, we assume all the players use the same 
modulation variance V = 20, as all secret key rates are relatively large at this value. There is no doubt 
that if we optimize the modulation variances at different numbers of players and distances, the 
performance will be further improved. 
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Fig 2. The relationship between secret key rates and the modulation variance V with different 

numbers of players n and transmission distances L. Simulation parameters are α = 0.2 dB/km, 
𝜀𝜀0 = 0.01, β = 0.95 and 𝐿𝐿𝐷𝐷 = 0 km. 

 
Fig 3. Secret key rate vs. the transmission distance L and 𝐿𝐿𝐷𝐷 with different numbers of players n. 

Simulation parameters are α = 0.2 dB/km, 𝜀𝜀0 = 0.01, β = 0.95, V = 20 and β = 0.95. 
In our CV-MDI QSS protocol, the distance between Charlie and the dealer   has a great 

influence on the transmission distance (the distance L between 𝑃𝑃1 and Charlie). In Fig. 3, we take 
the secret key rate as a function of L and 𝐿𝐿𝐷𝐷, and we set the numbers of players as n = 2, 5, 10, and 
20. From Fig. 3, we can observe that for the fixed n, the smaller L and 𝐿𝐿𝐷𝐷, the higher the secret key 
rate. Therefore, in order to get better performance, we need to make the dealer and Charlie as close 
as possible. The following simulation and discussion are also carried out in the extreme asymmetric 
case, that is, 𝐿𝐿𝐷𝐷 = 0 km. 
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Fig 4. The maximum transmission distance vs. numbers of players n and excess noise 𝜀𝜀0. 

Simulation parameters are α = 0.2 dB/km, V = 20, β = 0.95 and 𝐿𝐿𝐷𝐷 = 0 km. 

The excess noise 𝜀𝜀0 introduced by each player also has a great impact on the performance of the 
protocol. In Fig. 4, we take the maximum transmission distance as a function of the number of 
players and the excess noise 𝜀𝜀0. Obviously, when the number of players is fixed, the maximum 
transmission distance of the protocol will decrease sharply with the increase of the excess noise. 
Therefore, in practical implementation, in order to allow for more participants, we need to control 
the excess noise at a relatively low level. 

4. Conclusions 
In this paper, we introduce a CV-MDI QSS protocol where coherent states are prepared by each 

player and the dealer, and then measured by an untrusted third party, which can help to remove all 
detector side attacks against imperfect detectors. Numerical simulation results indicate that our 
protocol can be extended to a large number of players in the extreme asymmetric case, which makes 
up for the shortcoming of the existing entanglement-based CV-MDI multipartite quantum 
communication. Our work confirms that high performance QSS protocol is possible in the presence 
of imperfect detectors, which is of great help to the practical implementation of QSS. 
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